

DEPARTMENT OF ELECTRONICS ENGINEERING इ ले क्ट्रॉ निक्स इंजी नियरिंग डिपार्टमें ट

SARDAR VALLABHBHAI NATIONAL INSTITUTE OF TECHNOLOGY, SURAT सरदार वल्लभभाई नेशनल इंस्टिट्यूट ऑफ़ टेक्नोलॉजी, सूरत

Inter-disciplinary Minor Degree in "Drone Technologies"

Scheme:

S.	Department	Code	Subject	Sem	Scheme
No.					
1	DoECE	ECECM212	Drones Design, Communication, and Control	4	3-0-2
2	DoME	ECMEM371	Fundamentals of UAV Aerodynamics	5	3-1-0
3	DoEE	ECEEM396	Modelling and Control of Drones	6	3-1-0
4	DoCSE	ECCSM451	Machine Learning for Drone Applications	7	3-0-2

फ़ोन नं: संस्थान कार्यालय: २२२३३७१-७४, फैक्स नं: २२२८३९४,२२२७३३४ विभागीय प्रमुख: २२०१५५१, विभाग कार्यालय: २२०१५५२

ई-मैल: director@svnit.ac.in, hod@eced.svnit.ac.in

Department of Electronics Engineering

B.Tech. Electronics and Communication Engineering

B.Tech. II (ECE) Semester-IV Drones: Design, Communication,	Scheme	L	Т	P	Credit
and Control (ECEC212)		3	0	2	04

1.	Course Outcomes (COs): At the end of the course, the students will be able to
CO1	Understand basics of drones and radio communications for drones
CO2	Apply the control theory to drone payload design and control
CO3	Analyze the drone control and navigation
CO4	Evaluate the performance and endurance of battery and fuel powered drones
CO5	Design navigation and control routines for drones
CO6	Explain the components of a drone

2.	Syllabus	
	Design of Drone Systems	(06 Hours)
	Introduction to Design and Selection of the System, Aerodynamics Configurations, Characteristics of Aircraft Types, Components and functions of and multi-rotor drones, Design Standards and Regulatory Aspects-India Specific	of a fixed wing
	Avionics Hardware of Drones	(08 Hours)
	Flight controller module, mission controller onboard computer, data link, teler servos, accelerometer, gyros, magnetometer, GNSS, actuators, Pressure se sensor, power supply-processor, integration, installation, configuration.	•
	Payloads and Controls	(08 Hours)
	Type, size, and nature of Payloads, Payload versus endurance, Tracking, controls memory system, simulation, Kalman filtering, kinematics of drones, control strarotors, Payload release and variation handling.	•
	Communication	(08 Hours)
	Basics of radio wave communication, coherent and non-coherent transmission demodulation, filtering, ADC and DAC, baseband signal processing of radio Telemetry, radio control frequency range, modems, Servo receiver and remote	io transceiver,
	Navigation and Testing	(08 Hours)

Waypoints navigation, Code based positioning, phase-based positioning, Positioning, Differential positioning, Precise Point Positioning, RTK, ground con System Ground Testing, System In-flight Testing	_
Fuel powered drones	(07 Hours)
Engines for drones, thrust control, configurations of fuel powered drones (FPE range, power, and weight for FPDs, Vibration issues and mitigation, Dynamics of	,
(Total Contact Time: 45 Hours + 30 Hou	rs = 75 Hours)

3.	Practicals
1.	Introduction to basic components of drone
2	Introduction to Ardupilot and Mission Planner Environment Setup
3	Drone (Quadcopter) Assembly and Safety Rules and Regulations for drone operations
4	Configuration of Ardupilot parameter tuning: IMU, GPS, Telemetry, RC, GCS
5	Drone Testing on Gyro based Flight Tester (GFT)
6	Introduction of SITL tools and mission planning
7 Interfacing of BLDC motor with ESC and flight controller	
8	PCB design of drone components
9	PCB fabrication of drone components
10	3D design for Drone Components
11	3D printing of Drone Components
12	Drone Flying

4.	Books Recommended
1	Reg Austin "Unmanned Aircraft Systems UAV design, development and deployment", Wiley,
	2010.
2	Robert C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, Inc, 1998.
3	Kimon P. Valavanis, "Advances in Unmanned Aerial Vehicles: State of the Art and the Road to
	Autonomy", Springer, 2007
4	Paul G Fahlstrom, Thomas J Gleason, "Introduction to UAV Systems", UAV Systems, Inc, 1998
5	Dr. Armand J. Chaput, "Design of Unmanned Air Vehicle Systems", Lockheed Martin Aeronautics
6	B. P. Lathi and Zhi Ding, "Modern Digital and Analog Communication Systems", Oxford University
	Press, 2010.

B.Tech. III (ME) Semester-V Fundamentals of UAV	Scheme	L	Т	P	Credit
Aerodynamics (ECMEM371)		3	0	2	04

1.	Course Outcomes (COs): At the end of the course, the students will be able to
CO1	Understand fundamental principles of aerodynamics
CO2	Apply Bernoulli's equation to incompressible, inviscid flow analysis
CO3	Analyze the aerodynamic performance of airfoils
CO4	Evaluate the lift and drag characteristics of finite wings
CO5	Design three-dimensional incompressible flow models
CO6	Explain the aerodynamics of UAV configurations

2.	Syllabus	
	Introduction and Aerodynamics Fundamental Principles and Equations	(06 Hours)
	Fluid Statics, Classification of Flows, Continuity equation, Momentum Equ Equation, Pathlines, Streamlines, and Streaklines of a Flow, Angular Velocity, Strain, Circulation, Stream Function, Velocity Potential, Relationship Betwee Function and Velocity Potential.	Vorticity, and
	Inviscid, Incompressible Flow	(08 Hours)
	Fundamentals of Inviscid and Incompressible Flow, Bernoulli's Equation, lifting lifting Flow over cylinder, The Kutta-Joukowski Theorem and the Generation of	
	Incompressible Flow over Airfoils	(08 Hours)
	Downwash and Induced Drag, The Vortex Filament, the Biot-Savart Law, and He Theorems, Prandtl's Classical Lifting-Line Theory.	elmholtz's
	Three-Dimensional Incompressible Flow	(08 Hours)
	Three-Dimensional Source, Three-Dimensional Doublet, Flow over A Sphere, Ai Drag	rplane lift and
	Aerodynamics of UAV	(08 Hours)
	Aerodynamics of UAV Configurations, Fixed-wing, Rotary-wing, Aerodynamic Po Analysis of Different Unmanned Vehicles	erformance

	Tutorials will be based on the coverage of the above topics separately	(15 Hours)
	(Total Contact Time: 45 Hours + 30 Hour	rs = 75 Hours)

3.	Books Recommended
1	Reg Austin "Unmanned Aircraft Systems UAV design, development and deployment", Wiley,
	2010.
2	Robert C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, Inc, 1998.
3 Kimon P. Valavanis, "Advances in Unmanned Aerial Vehicles: State of the Art and	
	Autonomy", Springer, 2007
4	Paul G Fahlstrom, Thomas J Gleason, "Introduction to UAV Systems", UAV Systems, Inc, 1998
5	Dr. Armand J. Chaput, "Design of Unmanned Air Vehicle Systems", Lockheed Martin Aeronautics
6	B. P. Lathi and Zhi Ding, "Modern Digital and Analog Communication Systems", Oxford University
	Press, 2010.

Department of Electrical Engineering

Syllabus for B.Tech. Minor in Drone Technologies

B.Tech. Modelling and Control of Drones	Scheme	L	Т	Р	Credit
(ECEEM396)		3	1	0	04

1.	Course Outcomes (COs): At the end of the course, the students will be able to
CO1	Understand inertial and body frames, states, control inputs of drone
CO2	Obtain control relevant mathematical model of drone
CO3	Design controllers for controlling position and attitude of drone
CO4	Evaluate controllability, observability of drone
CO5	Apply state estimation techniques to estimate states of drone

2.	Syllabus	
	Drone Architecture from Control Systems point of view	(03 Hours)
	Introduction, Drone configuration, inertial and body frames, inputs and output drone, propeller rotation directions, various control actions, measurements who body frame.	
	Kinematic and Dynamic Equations of Drone	(14 Hours)
	Kinematics vs Dynamics, measuring the UAV's position, introduction to describe 3D rotation matrix formulation about Z axis, 3D rotation sequence, Introduction angles, Fixed vs Moving body frame rotations, Transfer matrix derivation, rotation and transfer matrix to drone, introduction to dynamics, dot product, mass moment of inertia, inertial tensor, translational motion, rotational motion dynamic equations of drone.	ction to Euler application of cross product,
	Forces and Moments	(05 Hours)
	Obtaining state space model of drone, Force of gravity, Gyroscopic effect on d control inputs, control inputs to rotor angular velocities - blade element theor model schematics, obtaining measurement model.	
	Controller design for Drone	(12 Hours)
	Obtaining linear transfer function and state space models, trim condition, late design, longitudinal autopilot, position control, attitude control, control allo control, digital implementation of PID loops, controllability, observable controllability of quadrotor, design of state feedback controllers.	cation, motor

State Estimation	(11 Hours)
Discrete time state space model, attitude Estimation, measuring pri complementary filter, nonlinear complementary filter, Kalman filter, position GPS-based position estimation, SLAM-based position estimation, velocities aerodynamic-drag-model-based velocity estimation method.	on estimation,
Tutorials will be based on the coverage of the above topics separately	(15 Hours)
(Total Contact Time: 45 Hours + 15 Hou	rs = 60 Hours)

3.	Tutorials
	Tutorials will be based on the coverage of the topics given in the detailed syllabus separately
	for 15 hours.

4.	Books Recommended
1	Robert C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, Inc, 1998.
2	Randal Beard and Timothy W. McLain, Small Unmanned Aircraft: Theory and Practice, Princeton University Press, 2012.
3	Quan Quan, Introduction to Multicopter Design and Control, Springer, 2017.
5	Bernard Etkin and Llyod Duff Reid, Dynamics of Flight Stability and Control, John Wiley and Sons, Third Edition, 1996.
6	Bandhu N. Pamadi, Performance, Stability, and Control of Airplanes, AIAA Education Series, 1998.
7	Crassidis J.L., Junkins J.L, Optimal estimation of dynamic systems, CRC Press, 2004.

Department of Computer Science and Engineering

B.Tech. MINOR in DRONE TECHNOLOGIES

B. Tech. IV (Semester-VII) MACHINE LEARNING FOR DRONE APPLICATIONS	Scheme	L	Т	Р	Credit
(ECCSM451)		3	0	2	04

1.	Course Outcomes (COs): At the end of the course, the students will be able to
CO1	Understand data, data collection, data visualization, and machine learning approaches for drone applications
CO2	Apply machine learning paradigms for drone applications for captured data
CO3	Analyze machine learning algorithms for the development of intelligent drone applications
CO4	Evaluate the various machine learning algorithms to gain an understanding of different application area
CO5	Implement a drone application using machine learning algorithms

2.	Syllabus		
	Introduction	(04 Hours)	
	Drone Multi-Modal Data: Sensor Data, GIS, Motion Data, 3D Imaging and Reconstruction; Data Collection: GPS, IMU, Video, Spectral, Thermal, etc.; Data Visualization: Trajectory Area using Digital Surface Model, Digital Terrain Models, Textured 3D Models, RGB Orthomosaics, Multispectral Model; Machine Learning Approaches: Supervised, Unsupervised, Semi-Supervised, Deep Learning; Applications: Precision Agriculture, Disaster Management, Delivery Service, Environment Monitoring: Earth Surface Monitoring (Soil, River, etc.), Forest Fire Monitoring, Entertainment, Surveillance and Security, etc.		
	Trajectory and Motion Planning	(15 Hours)	
	Trajectory Planning, Representations, Selection and Speed Planning; Motion Planning: Types, Random Sampling based Motion Planning, Non-Holonomic Motion Planning; Collision Detection: Obstacle Types, Collision Detection for Static Obstacles, Motion Prediction of Obstacles, Collision Prediction for Dynamic Obstacles; Path Planning Approaches: Graph-Based Algorithms, Breadth-First Search Algorithm, Depth-First Search Algorithm; Usage and Configuring of Space for Motion Planning, Representation as a Graph, Planning using Visibility Graph, Finding the Shortest Path, Variants of A*, Reinforcement Learning for Planning Machine Learning, Markov Decision Process, Model-based/Model-free Monte Carlo.		
	UAV Vision and Image Processing	(15 Hours)	

UAV Vision-based Sensors, Photogrammetry, Types of UAV Images, Image File F. Model, Image Sensing and Acquisition, Image Operations: Sampling and Aligning and Stitching Drone-Captured Images, Intensity Transformation Histogram Processing, Fundamentals of Spatial Filtering, Smoothing and Shar Filters, Image Restoration, Color Based Image Segmentation, Hyperspectral Tar Spectral Identification, Feature Extraction, Object Detection, Object Recognition Tracking.	Quantization, on Functions, pening Spatial get Detection,
Swarm Management	(04 Hours)
Introduction to UAV Swarm, Swarm Communication Architecture, Multi-UAV Planning and Estimation with Obstacles and With or Without Map Information, Global Path, Best Flight Path Learning, Independent Path Optimization, Multi-Ta	Local Path and
Drone Applications	(07 Hours)
Data Collection, Data Preprocessing, Designing of Machine Learning Approach	1
(Total Contact Time: 45 Hours + 30 Hour	rs = 75 Hours)

3.	Practicals
1.	Collect drone sensor data (GPS, IMU, video, thermal) and preprocess drone data (e.g., normalize, handle missing values) for input into a machine learning model.
2	Create and visualize a Digital Surface Model (DSM) and a Digital Terrain Model (DTM) from collected data.
3	Generate textured 3D models from drone imagery using photogrammetry software.
4	Perform image operations like alignment and stitching on a set of drone-captured images.
5	Implement a supervised machine learning model for the classification of regions using drone data for precision agriculture.
6	Simulate trajectory planning using graph-based algorithms (e.g., A* or Dijkstra's algorithm) in a predefined environment.
7	Implement feature extraction techniques and perform object detection on UAV images using computer vision libraries (e.g., OpenCV).
8	Develop a simple simulation to test collision detection algorithms with static and dynamic obstacles.
9	Perform object movement detection
10	Conduct hyperspectral analysis to identify materials in a specific area using drone-collected spectral data.

4.	Books Recommended
1	Randal W. Beard and Timothy W. McLain, "Small Unmanned Aircraft: Theory and Practice",
	Princeton University Press, 2012.
2	Stephen Marsland, "MACHINE LEARNING An Algorithmic Perspective", CRC Press, 2015.
3	Amy Frazier, Kunwar Singh, "Fundamentals of Capturing and Processing Drone Imagery and
	Data", CRC Press, 2021.
4	Chein-I Chang, "Hyperspectral Data Exploitation: Theory and Applications", Springer, 2007.
5	U. Snekhalatha, K. Palani Thanaraj, Kurt Ammer, "Artificial Intelligence-based Infrared Thermal
	Image Processing and its Applications", CRC Press, 2022.

5.	Additional Books Recommended
1	Steven M. Lavalle, "Planning Algorithms", Cambridge University Press, 2006.
2	Reg Austin, "Unmanned Aircraft Systems: UAVS Design, Development and Deployment", Wiley,
	2012.
3	Wei Shyy, Ella Atkins, Anibal Ollero, Antonios Tsourdos, Richard Blockley, "Unmanned Aircraft
	Systems", John Wiley & Sons, 2017.
4	S. Manfreda, E. B. Dor, "Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine
	Environments", Elsevier, 2023.